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Lung collapse, commonly associated with conditions such as atelectasis, pneumonia, and acute respiratory distress
syndrome, significantly impairs gas exchange and respiratory function. Monitoring lung re-aeration is therefore
crucial in evaluating the effectiveness of therapeutic interventions, including non-invasive ventilation, invasive
mechanical ventilation, and physiotherapy, which aim to restore lung volume and improve respiratory efliciency.
Lung re-aeration involves two key physiological processes such as recruitment and inflation. Both mechanisms
improve lung compliance and optimize ventilation-perfusion matching, improving overall respiratory function.
LUS has emerged as a promising alternative for assessing lung aeration, supporting its feasibility in detecting and
tracking lung re-aeration across various clinical scenarios, and providing real-time insights into lung recruitment
and inflation. This review integrates current evidence on the physiological mechanisms of lung collapse and the
clinical applications of ultrasound as a tool for monitoring lung re-aeration, highlighting its potential to optimize
respiratory management in critically ill patients.
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Introduction collapse leads to a reduction in the lung’s ability to oxygen-
ate blood and remove carbon dioxide, which can result in

Lung collapse, often associated with conditions like  severe respiratory distress [2]. Assessing lung re-aeration
atelectasis, pneumonia, and more severe forms of acute is therefore crucial for monitoring the effectiveness of
respiratory distress syndrome (ARDS), can significantly therapeutic interventions such as non-invasive positive

impair gas exchange and respiratory function [1]. This ventilation (NIV), invasive mechanical ventilation (MV),
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and physiotherapy. These interventions aim to restore
lung volume, improve gas exchange, and reduce the
workload on the respiratory muscles. Recruitment de-
scribes the aeration of previously gasless lung regions-
areas where alveolar units have collapsed or become
unventilated [3]. Physiologically, it refers to increasing
lung volume at the same pressure [4]. Inflation, on the
other hand, involves the further aeration of lung re-
gions that are already inflated, thereby increasing the
volume within these aerated areas [5]. This process
leads to the expansion of alveoli, improving lung com-
pliance and optimizing the matching between ventila-
tion and blood perfusion within the lungs.

By maximizing alveolar expansion in well-aerated
regions, inflation improves overall lung efliciency,
which is essential in cases where certain lung regions
are damaged or collapsed [6]. The effectiveness of
recruitment is often influenced by different ventila-
tory conditions, such as variations in positive end-
expiratory pressure (PEEP) and tidal volume (Vt),
which affect the gas distribution within the lungs [7].
This process can be quantified by measuring the re-
duction in nonaerated lung tissue, often expressed in
grams, under varying ventilation strategies [8].

Traditionally, computed tomography (CT) has
been the gold standard for evaluating lung aeration,
providing detailed images that allow clinicians to assess
the extent of lung collapse, recruitment, and inflation
[9]. CT scans enable precise quantification of aerated
and nonaerated lung tissue, offering insights into the
effectiveness of interventions aimed at improving lung
function [10,11]. However, CT is limited by its ac-
cessibility, high cost, exposure to ionizing radiation,
and lack of real-time feedback, making it less suitable
for frequent or bedside assessments. Lung ultrasound
(LUS) has emerged as a promising alternative to CT
in the evaluation of lung aeration [12,13]. Unlike CT,
LU is non-invasive, widely accessible, portable, and
safe for repeated use, as it does not expose patients to
radiation. It provides real-time feedback, making it
highly suitable for continuous monitoring in critical
care settings. Recent studies have shown that LUS is
feasible for detecting and monitoring lung re-aeration,
including recruitment and inflation, across various
clinical scenarios [1,14-16]. This review integrates
recent findings on the applications of LU in clinical

settings, particularly its effectiveness in detecting and
tracking lung re-aeration.

Physiological features of lung collapse and lung

re-aeration

Atelectasis can be classified into obstructive and
non-obstructive types [17]. The primary mechanisms
involved include increased pleural pressure, decreased
alveolar pressure, and surfactant dysfunction. Ob-
structive atelectasis occurs when airway obstruction
prevents air from reaching the alveoli, leading to dis-
tal air reabsorption and lung collapse [18]. Common
causes include tumours, mucus plugs, and foreign
bodies. High FiO, can also contribute to absorp-
tion atelectasis by accelerating oxygen absorption and
destabilizing alveoli [19]. Non-obstructive atelectasis
results from external compression, as seen in pleural
effusions, pneumothorax, or abdominal distension
[20]. Postoperative atelectasis, frequently occurring
within 72 hours of surgery, involves both obstructive
and non-obstructive mechanisms [21,22]. Treatment
aims at lung re-aeration through various strategies
[23]. Pneumonia-induced consolidation makes af-
fected regions non-recruitable, while ventilatable areas
remain inflamed [24]. Gravity, sedation-related muscle
inactivity, and chest wall load contribute to depend-
ent atelectasis. Recruitment manoeuvres, prone posi-
tioning, and higher PEEP can help reopen collapsed
lung regions. ARDS, a severe inflammatory condi-
tion, leads to alveolar-capillary barrier dysfunction,
impaired gas exchange, and lung heterogeneity [25].
Atelectasis plays a key role in ARDS management, as
its resolution helps optimize ventilation while prevent-
ing further lung injury [26-28]. The degree of lung
recruitment, correlating with responses to PEEP and
prone positioning, is crucial for tailoring ventilation
strategies and minimizing VILI [29].

Mechanical ventilation and re-aeration
Invasive MV plays a critical role in managing

patients with respiratory failure. With a target to re-
aeration, RM and optimal PEEP levels are used to
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counteract atelectasis, particularly in inhomogene-
ous lungs prone to collapse. However, lung structural
variability affects re-aeration efficacy, with aggres-
sive recruitment risking overdistension in some areas
while leaving others unaffected [27]. Invasive MV is
crucial in managing respiratory failure, aiming to re-
aerate collapsed lung regions through RM and optimal
PEEP. Cressoni et al. [30] found that lung recruita-
bility is higher in severe ARDS and depends on lung
morphology rather than disease origin. In a study on
early ARDS, non-focal morphology showed greater
lung recruitment (417 + 293 mL) than focal morphol-
ogy (48 = 66 mL), with focal ARDS exhibiting higher
alveolar hyperinflation (23% + 14% vs. 8% + 9%,
p = .007) [31]. Thus, recruitment manoeuvres may be
more beneficial in non-focal ARDS. While MV sup-
ports ARDS patients, it can also cause VILI [32]. Key
ventilatory parameters, including plateau and driving
pressures, PEEP, tidal volume, and dynamic factors
like respiratory rate, contribute to lung injury risk [33].
The extent of damage depends on lung tissue vulner-
ability, applied mechanical power, and exposure dura-
tion [34]. Protective ventilation strategies focus on low
tidal volumes and optimal PEEP to prevent alveolar
collapse while minimizing overdistension [35]. Over
time, the approach has shifted from “open the lung and
keep it open” [36] to “do no further harm,” reflecting
the limitations of ventilation in addressing lung inho-
mogeneity [37].

NIV is still a first step treatment in selected
acute respiratory failure, significantly increasing both
the range of treatable conditions and the settings in
which it is applied [38]. Once limited to specialized
units, NIV is now widely used in emergency depart-
ments, ICUs, and general wards, especially following
the COVID-19 pandemic [39]. Its versatility and ef-
ficacy make it valuable for managing conditions like
COPD exacerbations, cardiogenic pulmonary oedema,
and select cases of hypoxemic respiratory failure [40].
NIV reduces the need for artificial airways, lowering
ventilator-associated pneumonia risk, minimizing se-
dation, and preserving airway defences [41]. It mimics
key effects of invasive ventilation, enhancing minute
ventilation, reducing respiratory muscle workload,
and improving alveolar recruitment with PEEP [41].
Additionally, NIV impacts cardiac function, offering

benefits in heart failure or fluid overload while po-
tentially influencing cardiac output and ventricular
afterload [43]. However, NIV carries risks such as
ventilator-induced lung injury (VILI), auto-PEEP,
and patient discomfort due to poor synchroniza-
tion [44-46]. A related concept, patient self-inflicted
lung injury (P-SILI), describes lung damage caused
by excessive respiratory muscle activity, particularly
in severe ARDS patients, whether breathing sponta-
neously or under NIV [47]. P-SILI results from in-
tense inspiratory efforts that generate large pleural
pressure swings, leading to overdistension, pendel-
luft effects, pulmonary oedema, and regional injury
[48]. This mechanism disrupts tidal volume distribu-
tion, exacerbating inhomogeneity and increasing local
stress in atelectatic lung areas, even without large tidal
volumes [49].

How to perform lung recruitment

Alveolar recruitment can occur progressively as
collapsed lung regions reopen, mimicking the heal-
ing process in cases of inflammatory consolidation and
often signaling a favorable response to therapy. Oth-
erwise, it can be achieved through static or dynamic
ventilatory maneuvers during mechanical ventilation.
A recruitment maneuver typically involves a transient
increase in airway pressure to reopen alveoli, followed
by the application of adequate PEEP to maintain
lung expansion [50]. However, recruitment can also
occur through non-ventilatory means, such as clear-
ing airway obstructions or adjusting patient position-
ing. Despite its widespread use, recruitment remains
a non-standardized intervention. One of the earliest
approaches, the sigh maneuver, involves temporarily
increasing tidal volume or PEEP, leading to improved
oxygenation and lung compliance [51]. A commonly
studied method is sustained inflation, where the lungs
are held at high pressure (e.g., 30-45 cmH,0) for a
short duration. While this can enhance lung aeration
and gas exchange, its effects are often transient, re-
versing within minutes [50]. Similarly, CPAP-based
maneuvers (e.g., 35 cmH,0 for 20-30 seconds) have
been shown to improve oxygenation, but studies re-
port variable and short-lived benefits [52-54]. A more
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individualized approach involves performing a decre-
mental PEEP trial after recruitment, allowing identifi-
cation of the optimal level to prevent alveolar collapse
[55]. However, excessive pressures or frequent maneu-
vers may lead to overdistension and potential lung in-
jury, highlighting the need for careful patient selection.
In the context of NIV, traditional recruitment strate-
gies are less effective due to the inability to directly
control airway pressures [56]. Instead, techniques
such as prone positioning, postural adjustments, and
bronchoscopy-assisted clearance can enhance lung ex-
pansion and improve oxygenation. Prone positioning,
in particular, has demonstrated benefits in certain pop-
ulations by optimizing ventilation-perfusion matching
and reducing the risk of ventilator-induced lung injury
[57]. When combined with NIV, these strategies may
provide a non-invasive means of improving gas ex-
change in selected patients [58]. Finally, lung recruit-
ment should be tailored to the individual, balancing
potential benefits with the risks of lung overdistension
and hemodynamic compromise [59].

How to measure lung recruitment and re-aeration

Lung recruitment can be assessed using indirect
methods, such as gas exchange and lung mechanics,
which infer recruitment based on increased alveolar
participation in tidal ventilation. However, measuring
“functional” recruitment remains challenging, as im-
provements in oxygenation and lung mechanics may
also result from reduced cardiac output and changes
in intrapulmonary shunting rather than true alveolar
recruitment [60]. Indeed, studies have shown only
a weak correlation between oxygenation improve-
ment and recruitment assessed via CT scan, with car-
diac and vascular factors also influencing shunting.
Changes in elastance at higher pressures can reflect
both alveolar recruitment and improved lung compli-
ance, but in some cases, increasing PEEP may lead to
overdistension despite recruitment [61]. Direct meth-
ods include CT scans, pressure—volume (PV) curves,
electrical impedance tomography (EIT), and the
recruitment-to-inflation (R/I) ratio. CT scans quan-
tify lung recruitment by assessing tissue re-aeration at
different pressure levels [62]. While CT remains the

gold standard for lung morphology assessment, its
clinical utility is enhanced when recruitment strategies
are tailored to lung morphology. A multicenter rand-
omized controlled trial in France involving 420 ARDS
patients compared a standard low-PEEP strategy with
a personalized approach based on CT morphology. In
the personalized group, focal ARDS patients received
8 mL/kg tidal volume with low PEEP and prone po-
sitioning, while non-focal ARDS patients received
6 mL/kg tidal volume, high PEEP, and recruitment
maneuvers. However, 21% of patients were misclassi-
fied as focal or non-focal, with a higher mortality rate
observed in misclassified patients within the personal-
ized group [63]. More recently, Protti et al. found that
significant tissue recruitment, as measured by CT, was
not consistently associated with compliance improve-
ments, and an absence of recruitment could not be
inferred from stable or reduced compliance [64]. PV
curves assess recruitment by analyzing hysteresis and
volume shifts at different PEEP levels. Demoroy et al.
[65] demonstrated a correlation between lung hyster-
esis, calculated via PV curves, and volume increases
during recruitment maneuvers. However, PV-derived
recruitment does not always correlate with CT-based
assessments, as it primarily reflects gas volume changes
rather than true tissue recruitment. EIT and the R/I
ratio offer non-invasive, real-time monitoring of lung
recruitment [66,67]. However, monitoring lung re-
cruitment during NIV remains particularly challeng-
ing due to limitations in interface stability and air leaks
that affect pressure control and compliance measure-
ments [68,69]. While CT and PV curves are diffi-
cult to apply reliably in NIV, EIT and the R/I ratio
may provide valuable insights but require adaptation
to mitigate artifacts. These challenges underscore the
need for tailored monitoring strategies in NIV to opti-
mize recruitment and patient outcomes.

Lung ultrasound in pulmonary consolidation

The consolidated lung appears as a real anatomical
image rather than an artifact showing an hypoechoic
parenchymal texture similar to that of the liver, along
with blood vessels that can be identified using Doppler
imaging [70]. Despite consolidation, residual air may
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still be present within the affected lung regions, which
appears as bright, hyperechoic spots on ultrasound, rep-
resenting air trapped within the peripheral airways [71].
These spots are artifacts generated by the interaction
between ultrasound waves and air and are commonly
referred to as “air bronchograms” [72]. In cases where
air is still dynamically shifting; it is referred to as a dy-
namic air bronchogram, a feature that can help differ-
entiate consolidation from obstructive atelectasis [73].
Conversely, a static air bronchogram, where air remains
immobile within the affected bronchi, is often associ-
ated with airway obstruction. Obstructive atelectasis
typically presents with static bronchograms arranged in
a horizontal or parallel pattern due to parenchymal col-
lapse and volume reduction [74]. Another useful sign
in LUS is the “pulse sign,” which occurs in cases of at-
electasis [75]. It refers to the transmission of cardiac
pulsations through dense, non-compliant, air-deprived
lung tissue, causing visible rhythmic movement. Dis-
tinguishing atelectasis from consolidation requires
significant expertise, and LUS findings should always
be interpreted within the clinical context. In inflam-
matory consolidations, denser pre-consolidated lung
parenchyma often surrounds the affected areas. This
altered lung architecture appears on ultrasound as a mix
of artifacts, including vertical reverberation artifacts of
varying lengths and intensity [76]. When these arti-
facts originate from the edges of a consolidation, they
are referred to as “C-lines”, while those arising from
deep irregular borders of consolidations are described as
“shred signs”[77]. In addition, pleural irregularities and
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vertical artifacts emerging from the pleural line near the
consolidation have been associated with focal intersti-
tial syndrome [78]. The ultrasound appearance of these
findings varies depending on multiple factors, including
the stage of disease progression (Figure 1).

Clinical assessment

Various studies have explored LUS to assess al-
veolar recruitment using different strategies and pro-
tocols (Table 1). In a case report, LUS identified lung
consolidation consistent with pneumonia [79]. Dur-
ing a recruitment maneuver, increasing PEEP led to
the transition from consolidation to vertical B-lines,
indicating re-aeration. Similar findings were reported
by Gardelli et al. [80] and Santuz et al. [81], though
without quantitative assessment of re-aeration. Ste-
fanidis et al. [82] conducted a pilot study on 10 pa-
tients with lung consolidation, using LUS before and
after a recruitment maneuver (PEEP from 5 to 15
cm H,0), showing a correlation between ultrasound
changes and blood gas improvements. Bouhemad et
al. [83] developed a scoring system to quantify LUS
changes, correlating well with recruitment effective-
ness. Their study also demonstrated that LUS could
accurately monitor pneumonia resolution, with strong
agreement between CT-based aeration changes and
LUS re-aeration scores. In ARDS patients, they found
a significant correlation between PEEP-induced re-
cruitment measured by P-V curves and LUS-based

[ Air bronchogram ]

[ C-Lines J [ Shred sign ] [ hepatization ]

Figure 1. Ultrasound features of lung consolidation and atelectasis. Lung ultrasound in consolidation reveals a hypoechoic, liver-like
texture with visible blood vessels. Air bronchograms appear as hyperechoic spots, with dynamic bronchograms indicating consolida-
tion and static ones suggesting obstructive atelectasis. The “pulse sign” reflects cardiac pulsations in dense lung tissue. Additional LUS
features include C-lines, shred signs, and pleural irregularities, varying with disease progression.
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Table 1. Summary of key ultrasound studies on lung recruitment.

Study Type of study Primary focus Outcome
Pelosi et al. [91]  Prospective, interventional Test if the sighs recruit the lung, Sigh recruitment maneuvers improved
10 patients prevent reabsorption atelectasis, oxygenation and lung aeration; benefits reversed
and whether these effects within 30 minutes.
differ between pulmonary
and extrapulmonary ARDS
due to variations in chest wall
elastance.
Lapinski et al. Prospective Sustained inflation for alveolar ~ CPAP at 30-45 cmH,O for 20 seconds improved
[53] 14 patients recruitment in respiratory oxygenation within 10 minutes; effects lasted at
failure least 4 hours.
Villagra et al. Observational Recruitment maneuvers during ~ Significant increases in lung gas volume observed
[92] 17 patients lung protective ventilation in only in early ARDS; arterial oxygenation
ARDS unaffected.
Gardelli et al. Case report Sonographic assessment of lung Lung re-expansion using ultrasound after
[80] 1o patients recruitment in ARDS recruitment maneuvers.
Constantin et al. Observational Lung morphology predicts Recruited lung volume was significantly higher in
[63] 19 patients response to recruitment patients with non-focal ARDS compared to focal
maneuvers in ARDS ARDS.
Xi et al. [93] Randomized controlled ~ Recruitment maneuver in In the RM group the PaO,/FiO, was significantly
trial ARDS patients using low tidal ~ increased compared to baseline at 120 minutes
110 patients volume ventilation after RM on day one and day two (P=0.007

and P=0.001) but no significant difference in
hospital mortality.

Bouhemad et al.  Observational Compare lung re-aeration Bedside lung ultrasound can estimate lung re-

[83] 30 patients measured by bedside chest aeration in patients with ventilator-associated
radiography, lung computed pneumonia treated by antibiotics and can also
tomography, and lung detect the failure of antibiotics to reaerate the
ultrasound in patients with lung.

ventilator-associated pneumonia
treated by antibiotics.

Cressoni et al. Prospective ARDS patients PEEP up to 15 cmH,O and plateau pressure up

[30] 33 patients to 30 emH,O are insufficient for an open lung
strategy; higher pressures are needed, balancing
atelectrauma and volutrauma risks.

Tusman et al. Observational Postural recruitment maneuvers Changes in body position during ventilation at
[85] 83 patients in mechanically ventilated 10 cmH,0O PEEP reduced atelectasis without
children increasing airway pressures, while LUS can guide

personalized P-RM settings.

Wu et al. [88] Randomized double blind  Effects of ultrasound-guided Ultrasound-guided recruitment maneuvers

74 patients alveolar recruitment maneuvers reduce perioperative aeration loss and improve
on atelectasis in laparoscopic ~ oxygenation, with better effects on atelectasis than
surgery sustained inflation maneuvers.
Liu et al. [89] Randomized controlled ~ Recruitment maneuvers Lower incidence of atelectasis and postoperative
trial under LUS guidance in upper  hypoxemia in the recruitment plus PEEP
105 patients abdominal surgery group compared to control and PEEP-only

groups.
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re-aeration scores [84]. Tusman et al. [85] highlighted
the role of LUS in guiding ventilatory adjustments,
confirming atelectasis resolution after a stepwise in-
crease in airway pressure. After recruitment, a PEEP
of 10 cm H,0O maintained lung aeration, achieving a
plateau pressure of 25 cm H,O and SpO, of 99% with
an FIO, of 0.3. Similarly, in a pediatric ARDS case
on ECMO, LUS initially showed severe lung aera-
tion loss with dynamic air bronchograms and multi-
ple coalescent B-lines. Increasing PEEP to 30 mm
H,O resulted in the appearance of A-lines, indicating
successful re-aeration [86]. Another study explored
positional maneuvers for recruitment [87]. In three
anesthetized children, a PEEP trial failed to resolve
atelectasis in the supine position, but lateral position-
ing led to its disappearance in the non-dependent
lung. Both lungs remained aerated after returning to
supine. In a randomized trial comparing LUS-guided
alveolar recruitment to sustained inflation in laparo-
scopic gynecological surgery, the LUS-guided group
showed significantly lower post-surgical LUS scores
[88] Another randomized study on 122 abdominal
surgery patients found a lower incidence of atelectasis
in the recruitment + PEEP group (17.5%) compared
to control and PEEP-only groups (52.4% and 50.0%).
Postoperative hypoxemia was also lower in the recruit-
ment + PEEP group (5%) compared to the control and
PEEP groups (27.5% and 15%) [89]. Figure 2 depicts

an example of lung recruitment described by LU.

Practical approach

We suggest a flowchart for a systematic approach
in the assessment and monitoring of lung collapse and
alveolar recruitment, integrating LUS into various pa-
tient conditions (intubated, spontaneous breathing, or
NIV) (Figure 3). The decision-making process adapts
based on ultrasound responses during treatment, op-
timizing therapeutic management. The approach to
monitoring and managing lung collapse and alveo-
lar recruitment using LU can be tailored based on the
patient’s condition. For intubated patients, the initial
ultrasound examination (T0) focuses on identifying
consolidation or atelectasis, typically characterized by
B-lines, consolidation, or air bronchograms (Figure 3).

Figure 2. Consolidated recruited lung. The figures illustrate
atelectasis and tidal recruitment in the posterior regions. Pul-
monary consolidation or atelectasis appears as a hypoechoic
area interspersed with air bronchograms. The presence of tidal
recruitment is identified by visual differences in lung aeration
and the extent of atelectasis between end-expiration and end-
inspiration. Images A and B were captured following a lung
recruitment maneuver.

If atelectasis is detected, a recruitment maneuver, such
as increasing PEEP or performing sustained inflation, is
initiated. Post-maneuver ultrasound (T'1) is then used
to assess re-aeration, with a transition from consolida-
tion to vertical B-lines indicating successful recruit-
ment. If re-aeration is insufficient, additional measures,
such as positional changes or further increases in PEEP,
may be applied. The PEEP selection should be guided
by applying a step-wise increment in airway pressure to
detect the plateau opening pressure [90]. Ultrasound
is subsequently performed 30 minutes after the proce-
dure (T2) to confirm whether the re-aeration persists.
Ongoing monitoring is conducted every 6-12 hours to
detect the reappearance of atelectasis and guide fur-
ther interventions. In spontaneous breathing patients,
the initial ultrasound examination (T0) identifies the
presence of atelectasis or consolidation (Figure 4). If
no atelectasis is found, periodic ultrasound checks are
performed to monitor any changes in lung aeration. In
cases where atelectasis is observed, non-invasive recruit-
ment maneuvers, such as adjusting PEEP or utilizing
positional changes, are considered. After the maneuver,
post-recruitment ultrasound (T'1) is conducted to assess
the resolution of atelectasis. Again, a follow-up ultra-
sound is done 30 minutes later (T2) to ensure the lung
remains aerated. Regular monitoring helps prevent the
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Figure 3. Ultrasound-Guided assessment and management of atelectasis in intubated patients. Ultrasound assessment in intu-
bated patients: TO identifies atelectasis (B-lines, consolidation, air bronchograms). If present, recruitment maneuvers are applied.
T1 evaluates re-aeration, with B-lines replacing consolidation indicating success. T2 (30 min post-maneuver) confirms persistence.

Monitoring continues every 6-12 hours.
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Figure 4. Ultrasound Monitoring and Non-Invasiv.

e recruitment in spontaneous breathing patients. Ultrasound assessment in

spontaneous breathing patients: TO identifies atelectasis or consolidation. If absent, periodic monitoring is performed. If present,
non-invasive maneuvers (e.g., PEEP adjustment, positional changes) are applied. T1 evaluates re-aeration, with T2 (30 min later)

confirming persistence. Ongoing monitoring helps prevent recurrence.
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Figure 5. Ultrasound-Guided monitoring and NIV adjustments for atelectasis management. Ultrasound assessment in NIV pa-
tients: TO identifies consolidation and poorly aerated regions. If consolidation is present, NIV settings (e.g., PEEP) are adjusted to
improve aeration. T1 evaluates the response, with A-lines replacing B-lines indicating improvement. Long-term monitoring (every
6-12 hours) ensures persistent aeration and guides further NIV adjustments to prevent or manage atelectasis.

recurrence of atelectasis. For NIV patients, the initial
ultrasound examination (T0) focuses on identifying con-
solidation and poorly aerated regions (Figure 5). If con-
solidation is detected, adjustments to the NIV settings,
such as increasing PEEP, are considered to enhance
aeration. Post-treatment ultrasound (T'1) evaluates the
response, with the goal of transitioning from B-lines to
A-lines, indicating improved aeration. If the response
is inadequate, further adjustments to NIV support are
made. In all patient groups, long-term monitoring with
periodic ultrasound (every 6-12 hours) is essential to
ensure persistent aeration and to detect any new occur-
rences of atelectasis or complications. Depending on
ultrasound findings, ventilatory strategies are adjusted
to either prevent or address atelectasis, ensuring optimal
lung protection and recovery.

Conclusion

Ultrasound is an increasing tool in the assessment
of lung re-aeration, offering numerous advantages in

terms of accessibility, safety, and real-time feedback.
As research continues to validate its role and as tech-
nology advances, ultrasound will likely play a central
role in the management of patients with lung collapse
and respiratory failure, offering clinicians a reliable,
non-invasive method for monitoring and optimizing
treatment strategies.

Abbreviation: NIV= non-invasive ventilation; MV= mechani-
cal ventilation; ARDS= acute respiratory distress syndrome;
PEEP= positive end expiratory pressure; VT= tidal volume;
RM-= recruitment maneuver; CT= computed tomography; LU=
lung ultrasound.
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