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Lung collapse, commonly associated with conditions such as atelectasis, pneumonia, and acute respiratory distress 
syndrome, significantly impairs gas exchange and respiratory function. Monitoring lung re-aeration is therefore 
crucial in evaluating the effectiveness of therapeutic interventions, including non-invasive ventilation, invasive 
mechanical ventilation, and physiotherapy, which aim to restore lung volume and improve respiratory efficiency. 
Lung re-aeration involves two key physiological processes such as recruitment and inflation. Both mechanisms 
improve lung compliance and optimize ventilation-perfusion matching, improving overall respiratory function. 
LUS has emerged as a promising alternative for assessing lung aeration, supporting its feasibility in detecting and 
tracking lung re-aeration across various clinical scenarios, and providing real-time insights into lung recruitment 
and inflation. This review integrates current evidence on the physiological mechanisms of lung collapse and the 
clinical applications of ultrasound as a tool for monitoring lung re-aeration, highlighting its potential to optimize 
respiratory management in critically ill patients.
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Introduction

Lung collapse, often associated with conditions like 
atelectasis, pneumonia, and more severe forms of acute 
respiratory distress syndrome (ARDS), can significantly 
impair gas exchange and respiratory function [1]. This 

collapse leads to a reduction in the lung’s ability to oxygen-
ate blood and remove carbon dioxide, which can result in 
severe respiratory distress [2]. Assessing lung re- aeration 
is therefore crucial for monitoring the effectiveness of 
therapeutic interventions such as non-invasive positive 
ventilation (NIV), invasive mechanical ventilation (MV), 
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and physiotherapy. These interventions aim to restore 
lung volume, improve gas exchange, and reduce the 
workload on the respiratory muscles. Recruitment de-
scribes the aeration of previously gasless lung regions-
areas where alveolar units have collapsed or become 
unventilated [3]. Physiologically, it refers to increasing 
lung volume at the same pressure [4]. Inflation, on the 
other hand, involves the further aeration of lung re-
gions that are already inflated, thereby increasing the 
volume within these aerated areas [5]. This process 
leads to the expansion of alveoli, improving lung com-
pliance and optimizing the matching between ventila-
tion and blood perfusion within the lungs.

By maximizing alveolar expansion in well-aerated 
regions, inflation improves overall lung efficiency, 
which is essential in cases where certain lung regions 
are damaged or collapsed [6]. The effectiveness of 
recruitment is often influenced by different ventila-
tory conditions, such as variations in positive end- 
expiratory pressure (PEEP) and tidal volume (Vt), 
which affect the gas distribution within the lungs [7]. 
This process can be quantified by measuring the re-
duction in nonaerated lung tissue, often expressed in 
grams, under varying ventilation strategies [8].

Traditionally, computed tomography (CT) has 
been the gold standard for evaluating lung aeration, 
providing detailed images that allow clinicians to assess 
the extent of lung collapse, recruitment, and inflation 
[9]. CT scans enable precise quantification of aerated 
and nonaerated lung tissue, offering insights into the 
effectiveness of interventions aimed at improving lung 
function [10,11]. However, CT is limited by its ac-
cessibility, high cost, exposure to ionizing radiation, 
and lack of real-time feedback, making it less suitable 
for frequent or bedside assessments. Lung ultrasound 
(LUS) has emerged as a promising alternative to CT 
in the evaluation of lung aeration [12,13]. Unlike CT, 
LU is non-invasive, widely accessible, portable, and 
safe for repeated use, as it does not expose patients to 
radiation. It provides real-time feedback, making it 
highly suitable for continuous monitoring in critical 
care settings. Recent studies have shown that LUS is 
feasible for detecting and monitoring lung re-aeration, 
including recruitment and inflation, across various 
clinical scenarios [1,14–16]. This review integrates 
recent findings on the applications of LU in clinical 

settings, particularly its effectiveness in detecting and 
tracking lung re-aeration.

Physiological features of lung collapse and lung 
re-aeration

Atelectasis can be classified into obstructive and 
non-obstructive types [17]. The primary mechanisms 
involved include increased pleural pressure, decreased 
alveolar pressure, and surfactant dysfunction. Ob-
structive atelectasis occurs when airway obstruction 
prevents air from reaching the alveoli, leading to dis-
tal air reabsorption and lung collapse [18]. Common 
causes include tumours, mucus plugs, and foreign 
bodies. High FiO2 can also contribute to absorp-
tion atelectasis by accelerating oxygen absorption and 
destabilizing alveoli [19]. Non-obstructive atelectasis 
results from external compression, as seen in pleural 
effusions, pneumothorax, or abdominal distension 
[20]. Postoperative atelectasis, frequently occurring 
within 72 hours of surgery, involves both obstructive 
and non-obstructive mechanisms [21,22]. Treatment 
aims at lung re-aeration through various strategies 
[23]. Pneumonia-induced consolidation makes af-
fected regions non-recruitable, while ventilatable areas 
remain inflamed [24]. Gravity, sedation-related muscle 
inactivity, and chest wall load contribute to depend-
ent atelectasis. Recruitment manoeuvres, prone posi-
tioning, and higher PEEP can help reopen collapsed 
lung regions. ARDS, a severe inflammatory condi-
tion, leads to alveolar-capillary barrier dysfunction, 
impaired gas exchange, and lung heterogeneity [25]. 
Atelectasis plays a key role in ARDS management, as 
its resolution helps optimize ventilation while prevent-
ing further lung injury [26–28]. The degree of lung 
recruitment, correlating with responses to PEEP and 
prone positioning, is crucial for tailoring ventilation 
strategies and minimizing VILI [29].

Mechanical ventilation and re-aeration

Invasive MV plays a critical role in managing 
patients with respiratory failure. With a target to re-
aeration, RM and optimal PEEP levels are used to 
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counteract atelectasis, particularly in inhomogene-
ous lungs prone to collapse. However, lung structural 
variability affects re-aeration efficacy, with aggres-
sive recruitment risking overdistension in some areas 
while leaving others unaffected [27]. Invasive MV is 
crucial in managing respiratory failure, aiming to re-
aerate collapsed lung regions through RM and optimal 
PEEP. Cressoni et al. [30] found that lung recruita-
bility is higher in severe ARDS and depends on lung 
morphology rather than disease origin. In a study on 
early ARDS, non-focal morphology showed greater 
lung recruitment (417 ± 293 mL) than focal morphol-
ogy (48 ± 66 mL), with focal ARDS exhibiting higher 
alveolar hyperinflation (23% ± 14% vs. 8% ± 9%,  
p = .007) [31]. Thus, recruitment manoeuvres may be 
more beneficial in non-focal ARDS. While MV sup-
ports ARDS patients, it can also cause VILI [32]. Key 
ventilatory parameters, including plateau and driving 
pressures, PEEP, tidal volume, and dynamic factors 
like respiratory rate, contribute to lung injury risk [33]. 
The extent of damage depends on lung tissue vulner-
ability, applied mechanical power, and exposure dura-
tion [34]. Protective ventilation strategies focus on low 
tidal volumes and optimal PEEP to prevent alveolar 
collapse while minimizing overdistension [35]. Over 
time, the approach has shifted from “open the lung and 
keep it open” [36] to “do no further harm,” reflecting 
the limitations of ventilation in addressing lung inho-
mogeneity [37].

NIV is still a first step treatment in selected 
acute respiratory failure, significantly increasing both 
the range of treatable conditions and the settings in 
which it is applied [38]. Once limited to specialized 
units, NIV is now widely used in emergency depart-
ments, ICUs, and general wards, especially following 
the COVID-19 pandemic [39]. Its versatility and ef-
ficacy make it valuable for managing conditions like 
COPD exacerbations, cardiogenic pulmonary oedema, 
and select cases of hypoxemic respiratory failure [40]. 
NIV reduces the need for artificial airways, lowering 
ventilator-associated pneumonia risk, minimizing se-
dation, and preserving airway defences [41]. It mimics 
key effects of invasive ventilation, enhancing minute 
ventilation, reducing respiratory muscle workload, 
and improving alveolar recruitment with PEEP [41]. 
Additionally, NIV impacts cardiac function, offering 

benefits in heart failure or fluid overload while po-
tentially influencing cardiac output and ventricular 
afterload [43]. However, NIV carries risks such as 
ventilator-induced lung injury (VILI), auto-PEEP, 
and patient discomfort due to poor synchroniza-
tion [44–46]. A related concept, patient self-inflicted 
lung injury (P-SILI), describes lung damage caused 
by excessive respiratory muscle activity, particularly 
in severe ARDS patients, whether breathing sponta-
neously or under NIV [47]. P-SILI results from in-
tense inspiratory efforts that generate large pleural 
pressure swings, leading to overdistension, pendel-
luft effects, pulmonary oedema, and regional injury 
[48]. This mechanism disrupts tidal volume distribu-
tion, exacerbating inhomogeneity and increasing local 
stress in atelectatic lung areas, even without large tidal  
volumes [49].

How to perform lung recruitment

Alveolar recruitment can occur progressively as 
collapsed lung regions reopen, mimicking the heal-
ing process in cases of inflammatory consolidation and 
often signaling a favorable response to therapy. Oth-
erwise, it can be achieved through static or dynamic 
ventilatory maneuvers during mechanical ventilation. 
A recruitment maneuver typically involves a transient 
increase in airway pressure to reopen alveoli, followed 
by the application of adequate PEEP to maintain 
lung expansion [50]. However, recruitment can also 
occur through non-ventilatory means, such as clear-
ing airway obstructions or adjusting patient position-
ing. Despite its widespread use, recruitment remains 
a non-standardized intervention. One of the earliest 
approaches, the sigh maneuver, involves temporarily 
increasing tidal volume or PEEP, leading to improved 
oxygenation and lung compliance [51]. A commonly 
studied method is sustained inflation, where the lungs 
are held at high pressure (e.g., 30-45 cmH2O) for a 
short duration. While this can enhance lung aeration 
and gas exchange, its effects are often transient, re-
versing within minutes [50]. Similarly, CPAP-based 
maneuvers (e.g., 35 cmH2O for 20-30 seconds) have 
been shown to improve oxygenation, but studies re-
port variable and short-lived benefits [52–54]. A more 
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gold standard for lung morphology assessment, its 
clinical utility is enhanced when recruitment strategies 
are tailored to lung morphology. A multicenter rand-
omized controlled trial in France involving 420 ARDS 
patients compared a standard low-PEEP strategy with 
a personalized approach based on CT morphology. In 
the personalized group, focal ARDS patients received 
8 mL/kg tidal volume with low PEEP and prone po-
sitioning, while non-focal ARDS patients received 
6 mL/kg tidal volume, high PEEP, and recruitment 
maneuvers. However, 21% of patients were misclassi-
fied as focal or non-focal, with a higher mortality rate 
observed in misclassified patients within the personal-
ized group [63]. More recently, Protti et al. found that 
significant tissue recruitment, as measured by CT, was 
not consistently associated with compliance improve-
ments, and an absence of recruitment could not be 
inferred from stable or reduced compliance [64]. PV 
curves assess recruitment by analyzing hysteresis and 
volume shifts at different PEEP levels. Demoroy et al. 
[65] demonstrated a correlation between lung hyster-
esis, calculated via PV curves, and volume increases 
during recruitment maneuvers. However, PV-derived 
recruitment does not always correlate with CT-based 
assessments, as it primarily reflects gas volume changes 
rather than true tissue recruitment. EIT and the R/I 
ratio offer non-invasive, real-time monitoring of lung 
recruitment [66,67]. However, monitoring lung re-
cruitment during NIV remains particularly challeng-
ing due to limitations in interface stability and air leaks 
that affect pressure control and compliance measure-
ments [68,69]. While CT and PV curves are diffi-
cult to apply reliably in NIV, EIT and the R/I ratio 
may provide valuable insights but require adaptation 
to mitigate artifacts. These challenges underscore the 
need for tailored monitoring strategies in NIV to opti-
mize recruitment and patient outcomes.

Lung ultrasound in pulmonary consolidation

The consolidated lung appears as a real anatomical 
image rather than an artifact showing an hypoechoic 
parenchymal texture similar to that of the liver, along 
with blood vessels that can be identified using Doppler 
imaging [70]. Despite consolidation, residual air may 

individualized approach involves performing a decre-
mental PEEP trial after recruitment, allowing identifi-
cation of the optimal level to prevent alveolar collapse 
[55]. However, excessive pressures or frequent maneu-
vers may lead to overdistension and potential lung in-
jury, highlighting the need for careful patient selection. 
In the context of NIV, traditional recruitment strate-
gies are less effective due to the inability to directly 
control airway pressures [56]. Instead, techniques 
such as prone positioning, postural adjustments, and 
 bronchoscopy-assisted clearance can enhance lung ex-
pansion and improve oxygenation. Prone positioning, 
in particular, has demonstrated benefits in certain pop-
ulations by optimizing ventilation-perfusion matching 
and reducing the risk of ventilator-induced lung injury 
[57]. When combined with NIV, these strategies may 
provide a non-invasive means of improving gas ex-
change in selected patients [58]. Finally, lung recruit-
ment should be tailored to the individual, balancing 
potential benefits with the risks of lung overdistension 
and hemodynamic compromise [59].

How to measure lung recruitment and re-aeration

Lung recruitment can be assessed using indirect 
methods, such as gas exchange and lung mechanics, 
which infer recruitment based on increased alveolar 
participation in tidal ventilation. However, measuring 
“functional” recruitment remains challenging, as im-
provements in oxygenation and lung mechanics may 
also result from reduced cardiac output and changes 
in intrapulmonary shunting rather than true alveolar 
recruitment [60]. Indeed, studies have shown only 
a weak correlation between oxygenation improve-
ment and recruitment assessed via CT scan, with car-
diac and vascular factors also influencing shunting. 
Changes in elastance at higher pressures can reflect 
both alveolar recruitment and improved lung compli-
ance, but in some cases, increasing PEEP may lead to 
overdistension despite recruitment [61]. Direct meth-
ods include CT scans, pressure–volume (PV) curves, 
electrical impedance tomography (EIT), and the 
 recruitment-to-inflation (R/I) ratio. CT scans quan-
tify lung recruitment by assessing tissue re-aeration at 
different pressure levels [62]. While CT remains the 
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vertical artifacts emerging from the pleural line near the 
consolidation have been associated with focal intersti-
tial syndrome [78]. The ultrasound appearance of these 
findings varies depending on multiple factors, including 
the stage of disease progression (Figure 1).

Clinical assessment

Various studies have explored LUS to assess al-
veolar recruitment using different strategies and pro-
tocols (Table 1). In a case report, LUS identified lung 
consolidation consistent with pneumonia [79]. Dur-
ing a recruitment maneuver, increasing PEEP led to 
the transition from consolidation to vertical B-lines, 
indicating re-aeration. Similar findings were reported 
by Gardelli et al. [80] and Santuz et al. [81], though 
without quantitative assessment of re-aeration. Ste-
fanidis et al. [82] conducted a pilot study on 10 pa-
tients with lung consolidation, using LUS before and 
after a recruitment maneuver (PEEP from 5 to 15 
cm H2O), showing a correlation between ultrasound 
changes and blood gas improvements. Bouhemad et 
al. [83] developed a scoring system to quantify LUS 
changes, correlating well with recruitment effective-
ness. Their study also demonstrated that LUS could 
accurately monitor pneumonia resolution, with strong 
agreement between CT-based aeration changes and 
LUS re- aeration scores. In ARDS patients, they found 
a significant correlation between PEEP-induced re-
cruitment measured by P-V curves and LUS-based 

still be present within the affected lung regions, which 
appears as bright, hyperechoic spots on ultrasound, rep-
resenting air trapped within the peripheral airways [71]. 
These spots are artifacts generated by the interaction 
between ultrasound waves and air and are commonly 
referred to as “air bronchograms” [72]. In cases where 
air is still dynamically shifting, it is referred to as a dy-
namic air bronchogram, a feature that can help differ-
entiate consolidation from obstructive atelectasis [73]. 
Conversely, a static air bronchogram, where air remains 
immobile within the affected bronchi, is often associ-
ated with airway obstruction. Obstructive atelectasis 
typically presents with static bronchograms arranged in 
a horizontal or parallel pattern due to parenchymal col-
lapse and volume reduction [74]. Another useful sign 
in LUS is the “pulse sign,” which occurs in cases of at-
electasis [75]. It refers to the transmission of cardiac 
pulsations through dense, non-compliant, air- deprived 
lung tissue, causing visible rhythmic movement. Dis-
tinguishing atelectasis from consolidation requires 
significant expertise, and LUS findings should always 
be interpreted within the clinical context. In inflam-
matory consolidations, denser pre-consolidated lung 
parenchyma often surrounds the affected areas. This 
altered lung architecture appears on ultrasound as a mix 
of artifacts, including vertical reverberation artifacts of 
varying lengths and intensity [76]. When these arti-
facts originate from the edges of a consolidation, they 
are referred to as “C-lines”, while those arising from 
deep irregular borders of consolidations are described as 
“shred signs”[77]. In addition, pleural irregularities and 

Figure 1. Ultrasound features of lung consolidation and atelectasis. Lung ultrasound in consolidation reveals a hypoechoic, liver-like 
texture with visible blood vessels. Air bronchograms appear as hyperechoic spots, with dynamic bronchograms indicating consolida-
tion and static ones suggesting obstructive atelectasis. The “pulse sign” reflects cardiac pulsations in dense lung tissue. Additional LUS 
features include C-lines, shred signs, and pleural irregularities, varying with disease progression.
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Table 1. Summary of key ultrasound studies on lung recruitment.

Study Type of study Primary focus Outcome

Pelosi et al. [91] Prospective, interventional
10 patients

Test if the sighs recruit the lung, 
prevent reabsorption atelectasis, 
and whether these effects 
differ between pulmonary 
and extrapulmonary ARDS 
due to variations in chest wall 
elastance.

Sigh recruitment maneuvers improved 
oxygenation and lung aeration; benefits reversed 
within 30 minutes.

Lapinski et al. 
[53]

Prospective
14 patients

Sustained inflation for alveolar 
recruitment in respiratory 
failure

CPAP at 30-45 cmH2O for 20 seconds improved 
oxygenation within 10 minutes; effects lasted at 
least 4 hours.

Villagrà et al. 
[92]

Observational
17 patients

Recruitment maneuvers during 
lung protective ventilation in 
ARDS

Significant increases in lung gas volume observed 
only in early ARDS; arterial oxygenation 
unaffected.

Gardelli et al. 
[80]

Case report
1o patients

Sonographic assessment of lung 
recruitment in ARDS

Lung re-expansion using ultrasound after 
recruitment maneuvers.

Constantin et al. 
[63]

Observational
19 patients

Lung morphology predicts 
response to recruitment 
maneuvers in ARDS

Recruited lung volume was significantly higher in 
patients with non-focal ARDS compared to focal 
ARDS.

Xi et al. [93] Randomized controlled 
trial
110 patients

Recruitment maneuver in 
ARDS patients using low tidal 
volume ventilation

In the RM group the PaO2/FiO2 was significantly 
increased compared to baseline at 120 minutes 
after RM on day one and day two (P=0.007 
and P=0.001) but no significant difference in 
hospital mortality.

Bouhemad et al. 
[83]

Observational
30 patients

Compare lung re-aeration 
measured by bedside chest 
radiography, lung computed 
tomography, and lung 
ultrasound in patients with 
ventilator-associated pneumonia 
treated by antibiotics.

Bedside lung ultrasound can estimate lung re-
aeration in patients with ventilator-associated 
pneumonia treated by antibiotics and can also 
detect the failure of antibiotics to reaerate the 
lung.

Cressoni et al. 
[30]

Prospective
33 patients

ARDS patients PEEP up to 15 cmH2O and plateau pressure up 
to 30 cmH2O are insufficient for an open lung 
strategy; higher pressures are needed, balancing 
atelectrauma and volutrauma risks.

Tusman et al. 
[85]

Observational
83 patients

Postural recruitment maneuvers 
in mechanically ventilated 
children

Changes in body position during ventilation at 
10 cmH2O PEEP reduced atelectasis without 
increasing airway pressures, while LUS can guide 
personalized P-RM settings.

Wu et al. [88] Randomized double blind
74 patients

Effects of ultrasound-guided 
alveolar recruitment maneuvers 
on atelectasis in laparoscopic 
surgery

Ultrasound-guided recruitment maneuvers 
reduce perioperative aeration loss and improve 
oxygenation, with better effects on atelectasis than 
sustained inflation maneuvers.

Liu et al. [89] Randomized controlled 
trial
105 patients

Recruitment maneuvers 
under LUS guidance in upper 
abdominal surgery

Lower incidence of atelectasis and postoperative 
hypoxemia in the recruitment plus PEEP  
group compared to control and PEEP-only 
groups.
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re-aeration scores [84]. Tusman et al. [85] highlighted 
the role of LUS in guiding ventilatory adjustments, 
confirming atelectasis resolution after a stepwise in-
crease in airway pressure. After recruitment, a PEEP 
of 10 cm H2O maintained lung aeration, achieving a 
plateau pressure of 25 cm H2O and SpO2 of 99% with 
an FIO2 of 0.3. Similarly, in a pediatric ARDS case 
on ECMO, LUS initially showed severe lung aera-
tion loss with dynamic air bronchograms and multi-
ple coalescent B-lines. Increasing PEEP to 30 mm 
H2O resulted in the appearance of A-lines, indicating 
successful re-aeration [86]. Another study explored 
positional maneuvers for recruitment [87]. In three 
anesthetized children, a PEEP trial failed to resolve 
atelectasis in the supine position, but lateral position-
ing led to its disappearance in the non-dependent 
lung. Both lungs remained aerated after returning to 
supine. In a randomized trial comparing LUS-guided 
alveolar recruitment to sustained inflation in laparo-
scopic gynecological surgery, the LUS-guided group 
showed significantly lower post-surgical LUS scores 
[88] Another randomized study on 122 abdominal 
surgery patients found a lower incidence of atelectasis 
in the recruitment + PEEP group (17.5%) compared 
to control and PEEP-only groups (52.4% and 50.0%). 
Postoperative hypoxemia was also lower in the recruit-
ment + PEEP group (5%) compared to the control and 
PEEP groups (27.5% and 15%) [89]. Figure 2 depicts 
an example of lung recruitment described by LU.

Practical approach

We suggest a flowchart for a systematic approach 
in the assessment and monitoring of lung collapse and 
alveolar recruitment, integrating LUS into various pa-
tient conditions (intubated, spontaneous breathing, or 
NIV) (Figure 3). The decision-making process adapts 
based on ultrasound responses during treatment, op-
timizing therapeutic management. The approach to 
monitoring and managing lung collapse and alveo-
lar recruitment using LU can be tailored based on the 
patient’s condition. For intubated patients, the initial 
ultrasound examination (T0) focuses on identifying 
consolidation or atelectasis, typically characterized by 
B-lines, consolidation, or air bronchograms (Figure 3). 

Figure 2. Consolidated recruited lung. The figures illustrate 
atelectasis and tidal recruitment in the posterior regions. Pul-
monary consolidation or atelectasis appears as a hypoechoic 
area interspersed with air bronchograms. The presence of tidal 
recruitment is identified by visual differences in lung aeration 
and the extent of atelectasis between end-expiration and end-
inspiration. Images A and B were captured following a lung 
recruitment maneuver.

If atelectasis is detected, a recruitment maneuver, such 
as increasing PEEP or performing sustained inflation, is 
initiated. Post-maneuver ultrasound (T1) is then used 
to assess re-aeration, with a transition from consolida-
tion to vertical B-lines indicating successful recruit-
ment. If re-aeration is insufficient, additional measures, 
such as positional changes or further increases in PEEP, 
may be applied. The PEEP selection should be guided 
by applying a step-wise increment in airway pressure to 
detect the plateau opening pressure [90]. Ultrasound 
is subsequently performed 30 minutes after the proce-
dure (T2) to confirm whether the re-aeration persists. 
Ongoing monitoring is conducted every 6-12 hours to 
detect the reappearance of atelectasis and guide fur-
ther interventions. In spontaneous breathing patients, 
the initial ultrasound examination (T0) identifies the 
presence of atelectasis or consolidation (Figure 4). If 
no atelectasis is found, periodic ultrasound checks are 
performed to monitor any changes in lung aeration. In 
cases where atelectasis is observed, non-invasive recruit-
ment maneuvers, such as adjusting PEEP or utilizing 
positional changes, are considered. After the maneuver, 
post-recruitment ultrasound (T1) is conducted to assess 
the resolution of atelectasis. Again, a follow-up ultra-
sound is done 30 minutes later (T2) to ensure the lung 
remains aerated. Regular monitoring helps prevent the 
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Figure 3. Ultrasound-Guided assessment and management of atelectasis in intubated patients. Ultrasound assessment in intu-
bated patients: T0 identifies atelectasis (B-lines, consolidation, air bronchograms). If present, recruitment maneuvers are applied. 
T1 evaluates re-aeration, with B-lines replacing consolidation indicating success. T2 (30 min post-maneuver) confirms persistence. 
Monitoring continues every 6-12 hours.

Figure 4. Ultrasound Monitoring and Non-Invasive recruitment in spontaneous breathing patients. Ultrasound assessment in 
spontaneous breathing patients: T0 identifies atelectasis or consolidation. If absent, periodic monitoring is performed. If present, 
non-invasive maneuvers (e.g., PEEP adjustment, positional changes) are applied. T1 evaluates re-aeration, with T2 (30 min later) 
confirming persistence. Ongoing monitoring helps prevent recurrence.



Multidisciplinary Respiratory Medicine 2025; volume 20: 1029 9

terms of accessibility, safety, and real-time feedback. 
As research continues to validate its role and as tech-
nology advances, ultrasound will likely play a central 
role in the management of patients with lung collapse 
and respiratory failure, offering clinicians a reliable, 
non-invasive method for monitoring and optimizing 
treatment strategies.

Abbreviation: NIV= non-invasive ventilation; MV= mechani-
cal ventilation; ARDS= acute respiratory distress syndrome; 
PEEP= positive end expiratory pressure; VT= tidal volume; 
RM= recruitment maneuver; CT= computed tomography; LU= 
lung ultrasound.
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improve aeration. T1 evaluates the response, with A-lines replacing B-lines indicating improvement. Long-term monitoring (every 
6-12 hours) ensures persistent aeration and guides further NIV adjustments to prevent or manage atelectasis.
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