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Abstract

Determining the effects of antimicrobial therapies on airway microbiology at a population-level is essential. Such
analysis allows, for example, surveillance of antibiotic-induced changes in pathogen prevalence, the emergence and
spread of antibiotic resistance, and the transmission of multi-resistant organisms. However, current analytical strategies
for understanding these processes are limited. Culture- and PCR-based assays for specific microbes require the a priori
selection of targets, while antibiotic sensitivity testing typically provides no insight into either the molecular basis of
resistance, or the carriage of resistance determinants by the wider commensal microbiota. Shotgun metagenomic
sequencing provides an alternative approach that allows the microbial composition of clinical samples to be described
in detail, including the prevalence of resistance genes and virulence traits. While highly informative, the application of
metagenomics to large patient cohorts can be prohibitively expensive. Using sputum samples from a randomised
placebo-controlled trial of erythromycin in adults with bronchiectasis, we describe a novel, cost-effective strategy for
screening patient cohorts for changes in resistance gene prevalence. By combining metagenomic screening of pooled
DNA extracts with validatory quantitative PCR-based analysis of candidate markers in individual samples, we identify
population-level changes in the relative abundance of specific macrolide resistance genes. This approach has
the potential to provide an important adjunct to current analytical strategies, particularly within the context of
antimicrobial clinical trials.
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Introduction
As in all clinical disciplines, the management of patients
with chronic respiratory diseases is subject to a process of
ongoing refinement, including through the development
of novel antimicrobial drugs and treatment strategies. Un-
derstanding the impact of antimicrobial treatments for

individual recipients allows the personalisation of clinical
management. However, determining the effects of treat-
ments at a population level is also crucial, providing a
means to predict shifts in the prevalence of respiratory
pathogens, or the emergence of antimicrobial resistance,
within large patient groups.
The impact that evolving treatment strategies can have

on airway microbiology can be seen, for example, in
changes in the cystic fibrosis (CF) airway microbiota
during recent decades. Within this context, the use of
anti-Pseudomonal treatments, including parenteral ther-
apies and fluoroquinolones, have been implicated in the
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emergence of Stenotrophomonas maltophilia as an air-
way pathogen [1, 2]. Likewise, increasingly intensive
antibiotic use appears to be a contributory factor in the
increasing prevalence of non-tuberculous mycobacteria
[3, 4]. The impact of antibiotic use is also reflected in
the increasing frequency of multi-drug resistant organ-
isms in the airways of patients with chronic respiratory
disease, with an estimated 25–45% of adult CF patients
chronically infected with multi-drug resistant bacteria
[5]. For example, CF-derived methicillin-resistant Sta-
phylococcus aureus (MRSA) isolates increasingly show
resistance to newer therapies, including linezolid [6, 7],
ceftaroline [8] and tigecycline [6], presumably as a result
of frequent and prolonged exposures [9].
Despite the importance of understanding the impact of

antimicrobial exposure on the airway microbiome in those
with respiratory disease, characterising this process re-
mains challenging. Assessments of antibiotic-associated
changes in microbiology are typically limited to a small
group of predefined pathogens or resistance genes. The
standard analytical approaches employed in clinical anti-
biotic trials fail to assess major aspects of antibiotic resist-
ance, including shifts in the composition of the wider
airway microbiota, and the carriage of transmissible resist-
ance determinants by populations of commensal mi-
crobes. The absence of suitable strategies to determine
antibiotic impact has resulted in significant gaps in our
understanding of how widely employed therapies affect
the complex microbiota of the respiratory tract.
Shotgun metagenomic sequencing is an emerging

technology that allows highly detailed characterisation of
airway microbiota through the analysis of total microbial
DNA from clinical samples, including determination of
the prevalence of virulence factors and resistance deter-
minants [10]. While metagenomic approaches have been
shown to be highly effective in describing changes in the
microbiome across a wide range of clinical contexts [11],
the cost of its employment within population-scale stud-
ies is commonly prohibitive.
We describe a novel, cost-effective, strategy to inform

the use of assays for specific resistance genes or microbial
taxa, based on deep metagenomic screening of pooled
study cohort DNA. We illustrate the application of this
approach through the analysis of samples from a previ-
ously reported randomised controlled trial of long-term
low dose macrolide therapy in adults with bronchiectasis.

Methods
The BLESS randomised placebo-controlled trial assessed
the effect of 12 months of low dose erythromycin therapy
(twice-daily erythromycin ethylsuccinate; 400 mg) on ex-
acerbation rates in adults with non-CF bronchiectasis
[12]. The analysis reported here was based on paired base-
line and week 48 sputum samples from 32 members of

the treatment group, and subsequent analysis between
treatment group and placebo group subjects (n = 32, and
n = 31, respectively). Patient baseline characteristics are
described in Additional file 1: Table S1.
Sputum DNA extracts were pooled according to

time-point and subject to microbial DNA enrichment
(NEBNext® Microbiome DNA Enrichment Kit). DNA
fragmentation was performed with TruSeq Nano DNA Li-
brary Prep Kit (Illumina), prior to 150 bp paired-end
metagenomic shotgun sequencing using the Illumina
HiSeq system at the South Australian Health and Medical
Research Institute, Adelaide. Reads have been uploaded to
the Sequence Read Archive (SRA) under BioProject ID:
397083.
Sequences were quality filtered using Trimmomatic

v0.32 [13] and human-derived reads removed using
BBMap v35.40 (comparing reads to the NCBI human ref-
erence genome release GRCh38) [14]. Contigs were de
novo assembled using IDBA-UD v1.1.1 [15], followed by
identification of open-reading frames using MetaGene-
Mark v3.26 [16]. A non-redundant gene catalogue was
constructed using CDHIT v4.6 [17] and resistome com-
position annotated by BLASTP search to the Comprehen-
sive Antibiotic Resistance Database (CARD) v1.1.7 [18].
Quantification of gene hits was determined by SOAP
v2.20 [19] and normalised to counts per million reads.
Specific resistance genes that were identified as associ-

ated with erythromycin treatment through metagenomics
were subsequently quantified in DNA extracts from indi-
vidual sputum samples by qPCR. Previously published as-
says were used for ermA [20], ermB [21], ermC [22], 16S
[23], and smpB [24] genes. Primers for quantification of
hmrM were designed within this study (see Add-
itional file 1). For analysis of qPCR results, Wilcoxon rank
tests were performed on fold change normalised to 16S
copy number to compare erythromycin paired samples to
placebo control paired samples (n = 31 pairs).

Results
A schematic of the pooled-template metagenomic sequen-
cing strategy, and subsequent qPCR-based validation, is
shown in Fig. 1. Following removal of low-quality reads and
human DNA (approximately 90% of total read depth), a
mean sample read depth of 12,866,780 was achieved. Ap-
proximately half a million reads has been previously found
to be sufficient for sputum metagenome analysis in individ-
ual samples [25]. Mapping of sequence reads to the CARD
database resulted in the detection of a total of 102
resistance-associated genetic determinants. The distribution
of normalised reads that mapped to the CARD database in
pre- and post-trial pooled samples is shown in Fig. 2. De-
tected genes represented a range of resistance mechanisms,
including antibiotic inactivating enzymes, efflux pumps,
and effector site protection proteins, and conferred
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resistance to a number of antibiotic classes, including ami-
noglycosides, beta-lactams, glycopeptides, and tetracyclines.
A substantial proportion of the genes identified through

resistome analysis were chromosomally-encoded, non-trans
missible, resistance determinants. Changes in the level of

carriage of these genes during the trial therefore reflected
shifts in the relative abundance of the species in whose ge-
nomes they are encoded, rather than resistance gene acquisi-
tion or loss. For example, the multidrug efflux pump gene,
hmrM, appeared to increase in response to erythromycin

Fig. 1 Principle of pooled-template metagenomic sequencing. Sample DNA extracts from a population of interest are pooled together according
to a pre-specified variable of interest (such as treatment or time-point). Metagenomic sequencing is then performed on pooled samples and
regions that discriminate between populations are determined. Targeted assays (such as qPCR) are then performed on individual samples for
gene specific enumeration

Fig. 2 Resistome of pooled-template sputum before and after erythromycin therapy. Square root-transformed counts per million total reads (CPM) of
major antibiotic resistance genes identified by CARD database. Change in CPM where red indicates higher in samples post erythromycin. Resistance
genes grouped by function as defined by CARD where: brown = aminoglycoside resistance genes, red = beta-lactam resistance genes, orange = efflux
pump resistance genes, yellow = glycopeptide resistance genes, green = tetracycline resistance genes, blue = other resistance genes
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therapy. This gene is chromosomally-encoded by Haemophi-
lus influenzae however, and subsequent qPCR analysis re-
vealed hmrM levels to be correlated with H. influenzae levels
(r= 0.74, p < 0.001, Fig. 3). The observed increase in preva-
lence of hmrM is therefore likely to simply reflect an increase
in the relative abundance in H. influenzae in the assessed pa-
tient group (a median increase of 1.4 × 103 copies was ob-
served between pre- and post-erythromycin samples). This
phenomenon could explain apparent changes in the
group-level abundance of other chromosomally-encoded re-
sistance genes, such as an observed decrease in the relative
abundance of patA, a chromosomally-encoded fluoroquino-
lone resistance gene carried by Streptococcus pneumoniae
[26], and aph(3′)-IIb, a chromosomally-encoded aminoglyco-
side resistance gene carried by Pseudomonas aeruginosa [27].
Many of the other resistance genes identified through

pooled-template metagenomic sequencing were, however,
encoded on mobile genetic elements, and have been shown
previously to be transmissible between bacterial species.
These include a number of transmissible genetic elements
that confer resistance to macrolide antibiotics. For example,
qPCR-based validation analysis, revealed a significant in-
crease in the relative abundance of the plasmid-encoded
erythromycin resistance methylase gene, ermB, in subjects
who received erythromycin (p = 0.007), but not in those
who received placebo (p = 0.073, Fig. 4). The ermB gene
can be carried by a number of respiratory pathogens, in-
cluding S. pneumoniae, S. aureus, and H. influenzae [28–
30], and confers substantial resistance to all macrolide
drugs. In contrast, other transmissible macrolide-resistance
determinants were shown by follow-up qPCR analysis to
not contribute substantially to the post-trial resistome. For
example, ermA, a resistance gene found in staphylococci
[29], was present in only four subjects (two in the treatment
group and two in the control group). The ermC resistance

determinant, which is also found in staphylococci [29], was
detected more frequently (68% of subjects receiving placebo
and 81% of subjects receiving erythromycin), however,
ermC levels did not change significantly over the course of
the trial. The rates of carriage of ermA and ermC are con-
sistent with those reported in S. aureus clinical isolates
more widely [29, 31].

Discussion and conclusion
We describe a cost effective approach that can be used to
guide the assessment of changes in antibiotic resistance gene
carriage, which might represent a useful adjunct to conven-
tional approaches that are based on a priori target selection.
As an illustration, the BLESS randomised placebo-controlled
trial that preceded this study included an assessment of
whether erythromycin therapy resulted in an increased rela-
tive abundance of macrolide resistant oropharyngeal strepto-
cocci using culture-based proportional sensitivity testing
[12]. While this narrow analysis identified a significant in-
crease in the proportion of macrolide-resistant streptococci,
neither the level of transmissible resistance gene carriage in
non-streptococcal species, nor the molecular basis of resist-
ance, were determined. Our use of pooled metagenomic se-
quencing revealed a number of resistance determinants for
follow-up analysis where targeted qPCR assays were subse-
quently applied to DNA extracts from individual samples.
This validation step confirmed significant increases in the
abundance of, for example, the transmissible macrolide re-
sistance gene, ermB, in patients receiving erythromycin.
By pooling sample DNA at the pre-sequencing, rather

the post-sequencing, library-construction stage (as per-
formed in standard metagenomic sequencing ap-
proaches), we calculate the cost of our analysis to be
approximately 15% of that required to analyse all of the
samples individually (although precise costs will be influ-
enced by sample number, processing methodologies, and
desired sequencing depth). However, despite this sub-
stantial reduction in expense, it is important to be aware
of some of the limitations that are inherent in this ap-
proach. For example, variations in bacterial load between
samples from different patients mean that pooling DNA
based on total concentration could result in the contri-
bution of individual samples to meta-microbiome char-
acteristics being unequal. In addition, the non-normal
distribution of microbiome traits within a population
could lead to the identification of traits as potential
inter-group discriminators based on their particularly
high abundance in a small number of individuals (al-
though the impact of this effect is likely to decrease with
increasing cohort size).
A limitation of all metagenomic sequencing is the chal-

lenge to differentiate between changes in the carriage of
resistance determinants due to direct selective pressure
versus changes in resistance gene carriage, because of

Fig. 3 Correlation between hmrM and H. influenzae copy number.
hmrM (normalised to total bacteria) against H. influenzae copy
number (determined by comparing to known standard curve).
Significance determined by Spearman’s rank order correlation

Taylor et al. Multidisciplinary Respiratory Medicine 2018, 13(Suppl 1):30 Page 12 of 38



shifts in the relative abundance of the bacterial popula-
tions that encode them. Due to such limitations, the ap-
proach that we describe should be used as an additional
means to identify markers for further analysis, rather than
as a means to characterise antibiotic associated effects on
airway microbiology in itself.
As an illustration of the potential of the pooled-template

metagenomic analysis, we examined shifts in the airway
resistome. This application targeted the global health con-
cern of monitoring of antibiotic resistance. Patients with
chronic lung diseases have an increased exposure to antibi-
otics, with the emergence of resistance correlating closely
with consumption [32]. The resistome associated with the
airway microbiota in these patients is likely to be a substan-
tial contributor to the emergence and expansion of popula-
tions of multi-resistant organisms [33] and their potential
transmission to individuals within the wider community.
However, despite its application to the assessment of the air-
way resistome here, pooled-template metagenomic analysis
can be applied equally to assessment of species distribution
[34], or to identify changes in community level carriage of
pathogenicity traits (for example, through alignment to viru-
lence factor genetic databases). By aligning regions that en-
code antibiotic binding sites, it may also be possible to
determine the relative abundance of resistance-conferring
single nucleotide polymorphisms (SNPs). Obtaining such in-
formation could provide important clinical insight. For ex-
ample, while de novo mutations in the 23S rRNA are the
principal cause of macrolide resistance in non-tuberculous
mycobacteria [35], relatively little is known currently about
the dynamics of their emergence during macrolide therapy.
The costs of metagenomic sequencing, and the associated

costs of high performance computing required for bioinfor-
matic analysis, are likely to continue to fall. However, by
providing a low-cost means to perform unbiased surveys of
large patient cohorts, strategies such as the one described

here represent a useful means of identifying potentially im-
portant discriminatory microbiome features for follow-up
analysis.

Additional file

Additional file 1: hmrM primers and patient characteristics. (DOCX 18 kb)
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